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ABSTRACT 

The probability density distribution is discussed for 
two correlated random variables based on an approximation 
to a normal  (Gaussian)   law using Hermite polynomials of 
two variables. 

INTRODUCTION 

In many physical theories the following problem must be solved: 

Given a large number of experimental values of p quantities 

x-p.-.x , which are considered as random variables having a kqown joinc 

probability density 

fix,   ..•.x  i   6..>•.6   ) 
1 '       P     1        q 

how can an estimate 6. ,...6 be made of the q unknown parameters 9,,...6 

such that the surface 

z = fix. ,...x . 9.....6 J 
1     q' 1*   q 

fits the "cloud" of the experimental points as well as possible? 

This problem has been solved by several well-known methods during 

the last few decades; each of these solutions is based on a particular 

definition of the measure of the discrepancy between the surface and the 

experimental cloud.    There has been much discussion about the best choice 

for the measure of the discrepancy among the different schools.    Neverthe- 

less, it can be said, that in many physical problems estimates can now be 

made following one or the other of these methods which lead to results of 

great significance for theoretical physics. 

But the situation in fluid dynamics is very different if we want to 

study a turbulent flow statistically.    For instance, taking the most 

simple case of a homogeneous turbulence,  let us suppose that a great number 

of measurements have been made of velocity components  (U., IL, U-) and 

(V., V2, V_)  at two different points with a constant interval of time be- 

tween the two measurements.    No theory has yet been established giving the 

mathematical expression for the joint probability density 

'" - ■ ^J    '—    • ^ '^ . ■■    ' ' «SBawr" ■« 
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f(ur u2. U3. v1, v2, v3, e^.^e^ 

which these six random variables must follow, and thus we are confronted 

by a much more difficult situation.    Before making any estimate of the un- 

known parameters e,,..^ , we must first guess which particular function 

must be used for the joint probability density. 

For this problem, statistical mechanics is able only to give a few 

hints, which are, however, of great value.    In the classical case of a 

mechanical system with a finite number of degrees of freedom,  the prob- 

ability law,  according to J. W. Gibbs, is given by the canonical distri- 

bution in the phase space.    It has been shown that for some continuous 

media   having a countable number of degrees of freedom (for instance a 

vibrating string)  this result is still true.    It is still the normal law 

which maximizes the entropy (as defined in information theory),  and thus 

generalizes the canonical distribution to the function space describing the 

phases of the continuous medium. 

It seems natural to take as phase space for a homogeneous turbulent 

flow, the function space of all vector functions U.   (X.,  X2, X_), U2 (X., 

X2,  X-), U_  (X,,  X-,  X..) which are square integrable in any bounded domain 

(this space is called A in Reference 2; the reason leading to this choice 

is discussed in Reference 3).    The main feature of A is that the energy of 

any finite portion of the fluid is always finite.    A point in A is defined 

by a countable number of coordinates  (A can be considered as a direct sum 

of a countable number of Hubert spaces).     Is it then possible to extend 

the results proved for the vibrating string to the turbulent flow of an 

inviscid fluid?   The answer to this question is negative.    The canonical 

distribution of Gibbs and its extension to some continuous media is 

essentially based on the hypothesis that the systems are conservative; the 

canonical distribution and its extensions  correspond to a statistical 

equilibrium. 

References are  listed on page 23, 



If we assume, as we always do in research on turbulence, that the 

fluid is viscous, then there is a constant dissipation of energy.    If 

through the maximum entropy principle, we associate normal law and 

statistical equilibrium, we cannot expect that the joint probability 

density of the random variables would be the normal probability density. 

The logical consequence of the preceding remarks is that not being 

able to take advantage of the results linked with the statistical equilib- 

rium, we must start as near as possible to this case, i.e., as a first 

step we suppose that our turbulent flow is near the statistical equilib- 

rium.    In mathematical terms we must make the hypothesis that the joint 

probability density is given by the first terms of a series 

where f   is the normal probability density and the subsequent terms f 1, 

f2  ... mark the difference between the actual statistical state of the 

system and the statistical equilibrium. 

Obviously, the joint probability density can be put in the form 

i    (x,,   ...x  ,   öi,   ...6  1  Pix..   ...x  .   6.,   ...6  j o      1 p      1 q 1 p      1 q 

Where 
f       f- 

P = 1 +-~ + -j2-+  .   .  .     (f    >0) f       f o 
O 0 

As in most of the approximations made in physics, it seems logical 

to begin by assuming that P is a polynomial in x., ...x . Because of the 

exponential form of f , the simplest way to express this polynomial seems 

to be to use the Gram-Charlier series, based on Hermite polynomials. 

In the following pages we will summarize the essential features of 

the theory, giving special attention to the two-dimensional case, because 

most of the literature has been confined to the one-dimensional case. 

For a general exposition of the theory of Hermite polynomials in one 

and several variables,  see Reference 4;  for the one-dimensional Gram- 

Charlier series, we refer to Cramer, pp 221-231,    and Kendall, pp 145-150, 
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where further bibliographical references are given.    We are indebted to 

Dr.  Lieblein, who has pointed out to us papers, References 7 and 8, which 

are among the very few devoted to the two-dimensional case. 

Note that the Gram-Charlier approximation of the bivariate normal 

law, suggested here, differs on an essential point from that used in the 

literature known to us. 

As a rule, to represent a function of two variables f(x, y), one 
uses the polynomials ^(x) Hn(y).    From a purely theoretical point of view 

this is perfectly correct because it is well known that if a sequence 

♦0 (x), ♦j  (x),...*n(x), 

defines an orthonormal basis in the Hubert space of functions of one 

variable f(x)   (which are square integrable), the sequence of the product 

♦0 (x) ^ (y),...    yx)  <j.n(y),... 

constitutes an orthonormal basis in the Hubert space of functions of two 
variables f(x,y). 

This assumption leads to the following representation of the bi- 
variate probability density 

o,  o 

Correct from the point of view of the representation of a function 

of two variables by a series, this development has a major disadvantage. 
If we assume 

A =1 o, o 

+ 00 +00 



and all 

the function 

A. .   - 0    (j - 1. k - 1) 

2 2 (x-m)        (y-n) 

P    (x,y)  = r—^     e       2a 2 T2 

does not represent the bivariate normal law in the general case;  it only 

fits if the two normal random variables x and y are independent. 

Consequently,  a limited development 

2 2 (x-m)        (y-n) 
"—T~ '  ^T" 

i 2o 2 T i+k=2n ,      .        r      \'\ 

L     j+k=0 

is a possible approximation of the real probability density, but it is not, 

strictly speaking, its Gram-Charlier approximation. 

To generalize the one-dimensional Gram-Charlier approximation to 

bivariate probability density, we must start from the exponential 

^-[-^,(7-^)] 

and use polynomials in (x,y) deduced from this general normal law exactly 

as the H in one variable is deduced from the one-dimensional law. These 

polynomials will reduce to products H.. ^~) Hk fc^l if, and only if, 

r = 0. 

Fortunately, these polynomials are known. They were discovered by 

Hermite in 1864 (Reference 4, p 363). It is precisely in the case of two 

variables that he has made his most original contribution. It is now 

known that in the one-variable case, Tschebyscheff was his predecessor by 

4 years. But in the two-variable case Hermite introduced two adjunct 

sequences 

Gm,n ^ and Hm,n ^ 
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of polynomials, connected with two positive definite quadratic forms 

and its adjunct 

2 2 <J) (x,y)  = ax    + 2 bxy + cy 

>       .   > ^ , 2 < a-o, b-0    A = ac-b    -o 

,   fr      -»      c  r^      2b   rn   ,   a    2 

These two sequences of polynomials are biorthogonal. 

The remarkable properties of the polynomials G and H very easily 

lead to the true extension of the Gram-Charlier approximation for a bi- 

variate density. 

Not only are the formulas for the computation of the coefficients 

much simpler,  but the meaning of the development is also changed.     If 

we suppose all the coefficients A.  .   = 0 except A       =1, then the unique 
J,K 0,0 

term left coincides with the general bivariate law with an arbitrary 

correlation coefficient r. 

The main contribution here is thus to substitute for the usual 

series a new Gram-Charlier series based on the polynomials G^ n(x,y)  and 

H   _(x,y)  introduced by Ch. Hermite. 
mji 

rn^n 
The computation of the sufficient condition for the polynomial 

P4(x) to be positive was made by Mr. M.  Pine. 

ONE-DIMENSIONAL GRAM-CHARLIER SERIES 

The Hermite polynomials in one variable x are defined by the 

generating function 2 

hX-  2"   v,*- h" , , W 

from where we deduce 2 x 

,. (?') 2      . 
Hn  (x) = (-l)n    e        ^n^     ' [21 



■. 

If n is even, 

"„ ^ ' "n^' 

and if n is odd. 

Hn (-X) = - Hn(x) 

We have 

Ho (x) = 1 

Hj (x) = x 

H2 (x) = x2 - 1 

3 
H, (x) = x - 3x 

H4 (x) = x4 - 6 x2 + 3 

H5 (x) = x5 - 10x3 + 15x 

H, (x) = x - ISx + 45x - 15 
o 

H„ (x) = x7 - 21x5 + 105x3 - 105x 

Hg (x) = x8 - 28x6 + 210x4 - 420x2 •» 105 -« 

H9 (x) = x9 - 36x7 + 378x5 - 1260x3 + 945x 

H10(x) - x10 - 45x8 + 630x6 - 3150x4 + 4725x2 - 945 

The Hermite polynomials satisfy the following equations 

Hn(x) - x H^jCx) + (n-1) Hn_2(x) = 0 [3'] 

2 
d Hn   d Hn    „   „ ,_„, 
 2 - x   + n Hn = 0               [3"] 
d x     dx o 



I 
The polynomial H (x) has n real roots. 

We have the pair of conjugate Fourier transforms 

2 

(x real) 

-x2 ,     ^♦-      -ikx -Y 

e 2   Hn(x)  =727 e "    (ik) n dk [4] 
•'    -00 

^ 
X n +ao      ilex * -- 

(ik)    e = 1_  f      e 2   Hn  (x)  dx [5] 
^TJ. 12 it 

(k real) 

The Hermite polynomials have the fundamental orthogonality property 

2 

J 
x 

Hm (x) Hn (x) dx = 2 , nl i^ [6] 

which results,  fo- the Fourier coefficients A , in ' n' 

2 
X        . +<» 

f (x)  s -^ e '   p[]     An Hn(x)] [7] _1_ " 2 

^7 

and 

■■■€ f(x) Hn  (x) dx [8] 
00 

The right-hand side of Equation  [7] is known as the Gram-Charlier series of 

f (x); we will find in Reference 4, pp 351-355, sufficient conditions for 

the validity of the representation of a given function f(x) by this series. 

8 



GRAM-CHARLIER APPROXIMATION OF THE PROBABILITY DENSITY FOR ONE 
RANDOM VARIABLE 

Let us consider a random variable X having moments of all orders. 

We put 

X = m [9] 

(X - m)2 = o2 [10] 

and consider the moment centered at expectation 

(X - m)k = Mk,    k = 3,4,.... [11] 

Let us assume that the probability density of x is given by: 

(x-m) 
i " 9    2 

P(x)  =     == e a      P.    (x) [12] 

^27 
2n 

where P-    (x)  is a polynomial of degree 2n  (if we take a polynomial of odd 

degree 2n + 1, we will have the consequence that for x -► -00 or x ->■ + «, 

depending on the coefficient of x        , the probability density P  (x) will 

have very large negative values, which is absurd).    It is always possible 

to express any polynomial as a sum of Hermite polynomials.    Thus we can 

write 

2 • 
(x-m)        2n 

PW = —^ e     2 o2 pT    A. H.  (2f)J [IS] 
I/2   71   0 0 

Let us note that P(x)  is an entire function of order 2 of x. 

T 



From the orthogonal property. Equation [6], we get the remarkably 

simple expression for the coefficients 

A = J_  H (.L^JÜ) [Hi 
n  n ! n v a l J 

namely, 

Ao = 1 [15] 

A1 = 0 [16] 

A2 = 0 [17] 

1   y3 
A3=T!  3 W 

a 

1    y4 

0 

1 v5 u3 

0      o 

A6= i (T -15 T + ^ [21] 
o a 

We can have equivalent expressions in terms of the cumulants K in 

place of the centered moments u . Let us remember that (Kt) being the 

characteristic function 

i t X 
Kt) = e 

the cumulants K    are defined by the expression 

10 



I> ig 

log*(t) =2]  Kn-^T2- [22] 

1 

the series being convergent in the circle |t| < 6, and where ^(t)  > 0. 

We find 

Kj = 0 

K2 = a
2 

K4 = M4 - 3 o 

Thus, with this notation, we obtain the equivalent expressions 

A
0 

S 1 

Al 
= 0 

A2 s 0 

A3 = K3 6 ( 
2 

3 

A4 
= K4 24 4 

0 

The expression of the characteristic function 4>(t) corresponding to 

the probability density P(x) defined by Equation [13] can easily be com- 

puted. From Equation [S] we obtain 

2 2 2 
o t +»  ..    (x-m) 

itm =     ,  /•    it x - i 4—  /„ v 

thus - 
2 2  m 

2  LZ-J  A. (i o t] *(t) = e lmt 
n  J 

[24] 

The simplest way to compute the moments u in terms of the A. (i.e., 

the inverse formula of Equation [14]) is to compute the coefficients of t 

in the development of the entire function of t defined by [24]. 

11 



If we assume that all the A   for n - 1 are equal to zero, the 

probability density P(x)  is simply the normal law. 

The first step, to use the Gram-Charlier approximation, would be 

to try 

(x-m) 

p(x) = ite 2°211+A3 H3 {^)+ A4 H4 ^i    (25' 
the coefficients A_ and A4 being computed from the known moments y, and 

y. by formulas  [18]  and  [19].     In order that   [24] be the exact expression 

of the probability density of x,  all the coefficients A5, A,, A-,...com- 

puted from the given y    by  [20],   [21]...must be zero. 

Let us note that the characteristic function corresponding to  [25] 

has the expression 
2    2 

•   *      at imt imt __   p -. 
*(t) = e L1 + A3  (i at)3 + A4   (1 at)4J [26] 

Thus  (})(t)   is an entire function of order 2. 

All the moments y_,  u.,  y,.,  can easily be expressed in terms of A_ 

and A., by computing  (from Equation  [25])  the development of (j)(t)  in a 

power series 

2    2 3 4 
*r^        ^        •   *        O     t: (it)^ (it)4 

4»(t) = 1 - imt -      2      + y3 ^jy2- + y4 -^p- +  .   .   . 

One way to test the accuracy of the Gram-Charlier approximation, limited 

to a polynomial of order 4, would be as follows: 

a) compute A, and A4 from the known values of y_ and \i.  by formulas 

[18] and [19]; 

b) from these values of A3 and A. compute the moments y,-, y6, y7 . 

A  in 2 

y5 = 10 a W3 

12 



y.  =  15 o    y.  -  30 o 
O 4 

and then compare these values with the known values y-,  y*, v-,. 

We could consider the approximation as being good if the dif- 

ferences 

K  ■  ^   |y6 ■  ^   ^7 -  ^ 

are all small. 

It is  interesting to note that in that case the skewness of P(x)   is 

produced by A- only;  if A,, = 0,  the function P(x)   is even in  (x-m). 

As we have already pointed out, in order that P(x)  might be a 

probability density, the polynomial P2 (x) must satisfy the condition 

P2n(x)  - 0 [27] 

for all  real  x; this condition seems to have been neglected very often. 

Let us observe that 

V   =   '*  A3 H, (if) + A4 H4 (^) 

is a continuous function of A,,  A..    For A_ = A. = 0 we have 
3  4      3   4 

P4OO = 1 

and the condition is satisfied. Thus, if 

|A3| < ß 0 < A4 < a 

we are sure that Equation  [27]  is satisfied, 

Putting 

a =  3-^-   b= 3 +^- j 
A4 A4 ^ 

- 

13 



we find the following bounds 

b - 9,   a -V' 48 »^i766 2840 [28] 

JOINT PROBABILITY DENSITY OF TWO RANDOM VARIABLES 

Let (X,Y) be a pair of random variables; suppose we know the moments 

Xj Yk = m  k for 0 - (j + k) - j [29] 

We write m and n for m,  and m , 1,0 0,1 
(the expectations of X and Y) 

X = m   Y = n [30] 

From m. ,   we can compute the moments centered at expectation 

(X-m)j    (Y-n)k =  u.  , [31] 
J »K 

2 2 
We write a    and x    for y-     ,  y    9  (the variances of X and Y)  and r o  T 

for p.   ,   (r being the correlation of X and Y).    We always suppose 

o > 0    T > 0 

(X-m)2    = a2 [32] 

2 2 
(Y-mr    = T 

(X-m)     (Y-n)  = r o T    |r|  -  1 

If (X,Y) follows the normal  law, 

14 



Prob [x < X < x + dx, y < Y < y + dyj = p  (x,y)  dxdy [33] 

(x,y) =   YH e*? L   1 * (x"m' y"n) J 

where 

*  (- /)   = 
1 

(1 r2) 

2 
JL. 

2 
a 

o    xy    y 2 r —i- + i— at 2 
T     . 

[34] 

A  = 
1 

2    2   M 2, o    T    (1 - r ) 

To represent  the given m. ,   (or \i. .)  as well as possible, we J ,K J,K 
will try a probability law of the type 

P (x.y) = — exp f* (x m, y - n) P (x,y) [35] 

where P  (x,y)  is a suitably chosen polynomial.    We will give an expression 

for P  (x,y)  in terms of the Hermite polynomials of two variables. 

HERMITE POLYNOMIALS OF TWO VARIABLES 

Consider a positive definite quadrati c form 

2 2 <ji  (x,y)  = ax   + 2 bxy + cy [36] 

a>0    c>0    A=ac-b    >0 

and its adjunct 

,   ,_■»       C-2      -»b- a2 ^  (^ n) =rS   - 2T5 n +-n [37] 

Putting 

15 



C = ax + by    n = bx + cy [38] 

we have the identity 

* U, n)  = 4> (x, y) [39] 

Following Reference 4, pp 363-387, we define the Hermite polynomials 

"m.n (x.y)  and G^ (x,y) by 

+00 

exp    h  (ax + by)  + k  (bx + cy)   - | <j.  (h,k}l  ^    ^ ^ H^  (x. y)[40] 

exp [hx + ky - i ♦ Ch,k)J £    £ £ G,)n (x.y) [41) 

Let us recall some useful properties of those polynomials 

H        (x,y)  =  (-l)"*11 e m,n  K  '''      K    J 

2 * (x.y) ,m+n 

^    m , 
3 x     3 y =[■ 

-j*  (x,y) 

] [42] 

Gm,n  ^  -  t-1^ e 

t jn,n        ! 2 

3Cm an 
-[. n L "'] [43] 

The polynomials H    „ and G   „ verify the following conditions: m.n m,n ' 0 

i r
2- H        (x,y)  = am H        .       + bn H 9 x    m,n  ^  ,/J m - l,n m,n -  1 

-—    H   ^  (x,y) = bm H        .       + en H , 3 y,    m,n v  ,/y m - l.n m,n - 1 

[44] 

16 



o x   m,n m - l, n 

^— G        (x,y)  = n G . 3 y    m,n v  ,/-' m, n - 1 

+ bn H m 

Ho.l  ^'^  = n 

[45] 

H
m,n  ^  -  ? »m -  1. n ^ + a (» "  ^ "m - 2. n  ^>^ t46! 

- 1. n -  1  W = 0 

H
m,n  ^'^  " n H

m,n - 1  ^  + bm Hm -  1. n - 1  ^'^ 

+ C  (n " ^ H
m,n - 2  Cx'^  = 0 

Gm.n ^  "  x G
m -  1. n (x'^  + f (m '  ^ Gm - 2. n  ^'^ W 

-TnG
m- l,n -  1  ^'^  =0 

G
m.n ^  - y Gm.n - 1 ^'^  " T"1 Gm - 1, n - 1  (x^ 

^^"^Vn-  2(x^  =0 

The first polynomials H        have the following expressions: 

H0>0 (x,.y)  = 1 [48] 

H1>0 (x.y)  = C 

.2 i 
H2.o ^'^ = r -a 

Hj j (x,y) = 5 n - b 

17 



H 
0.2 

H 
3,o 

H 
2,1 

H 
1,2 

H 
o.3 

H 
4,0 

H 
3,1 

H 

H 

2,2 

1.3 

H 
o,4 

x,y 

x.y 

x,y 

x,y 

x.y 

x.y 

x.y 

x.y 

x.y 

x.y 

2 
n    - c 

= r - 3 a C 

= C   n-2b£;-an 

= Cn    - 2b n - c C 

= n    - 3 c n 

C4 - 6 a ^2 + 3 a2 

C3n - 3 b ^2 - 3 a C n + 3 a b 

r2    2 .2      . ,   r 2 0 ,2 
C    n    -cC    -2bCn-an    +ac+2b 

Cn    -3bn    -3cCn+3cb 

4 2,2 
n    -6cn    +3c 

The first polynomials G        have the following expressions 

Go,o ^ = 
1 

Gi,o (x^ 
= X 

Go.l   Cx'y) = y 

G2.o  ^^ 
= 2      c x   -T 

Gj   j   (x.y) = b 
xy +T 

Go.2   ^'^ 
s y2 -^ 

G3,o  (X'-V) = 3       .  c 
x    -  3 — x A 

G9  ,   (x,y) 
-1x 

= 2           o b x    y + 2 — x 

Gj  2   (x.y) s xy2  +  2^y- 

[49] 

18 



Go,3 (x'y)  = y3 ' 3fy 

4 c    2 2 

G4.o  (x'y)   = X    "  6"A X    + 372 

_ ,       x 3 3c 3 b    2      3bc G3 1  (x,y)  = x    y - — xy + -^-x    - — 
' A 

2 
„ ,. 22a2c2      4b ac-b G (x,y)  = x    y    --^-x    --y    + _ xy + - + 2-^ 

A A 

_ ,       . 3      3a 3 b    2      3 ab G        (x,y)  = xy    -  —  xy + —  y    -  — 
A 

<- /■       -> 4       ,  a    2      ,  a G0)4  (x,y)   = y    -  6Ty    .3-2- 
A 

The two sequences of polynomials H        and G        have the orthogonality ^ r/ m,n m,n & ' 
property 

Vä"   r       r     "T* (x'y) 

27 I      e H
m.n  ^X'^  Vq  ^  dxdy = 

6        6        m!  n! m,p    n,q 

[50] 

This is the most original contribution of Hermite:    the H        or the G 0 m,n       m,n 
are not orthogonal to ihumselves but they are biorthogonal, i.e., they are 

orthogonal to each other in this very special way. 

Let us note that the polynomials H   (x,y) and G   (x.y) r    / m,n      'JJ m,n  v   '/y 

degenerate in a product H  (x) H (y)   if,  and only if, the coefficient r is 

equal to zero. 

GRAM-CHARLIER APPROXIMATION OF A TWO-DIMENSIONAL PROBABILITY DENSITY 

Let us now suppose that  in the probability law   [35]  the poly- 

nomial P (x,y)   is the sum of a finite number of Hermite polynomials 

H      (^-5 , 2LUL) 
m,n \    o T     ' 
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In the quadratic forms  [36] and [37] we will assume 

1 u r 1 rm a « y .    b .    j .    c = f [51] 
1-r 1-r 1-r 

thus 

u2 1 
A = ac - b2 = ■   1    7-    |r|   - 1 [52] 

1 - r 

and [36] becomes 

♦  (x,y)  =  -^—2  (x2 - 2 r x y + y2) [53] 
1 - r 

the adjunct form [37] being 

1» (C. n) = ?2 + 2 r ? n + n2                                   [54] 

the variables  (5,  n)  and (x^) being connected by 

K =  —L-2    (x - r y)    n =  -J—2  (- r x + y)                       [55] 
1-r 1-r 

Now it is obvious that, when (x,y)   follows the normal  law, we 

have 

P0 (x.y) =        1 

TI o T yl  -  r 

^[-i*(^.^]    tS61 

where the quadratic form ♦ is defined by  [53]. 

Let us point out again that p    (x,y)  is the probability for a 

pair of random variables X, Y which are not necessarily independent;  it 

applies even if the correlation r of X, Y is not zero.    Now the principle 

of our method is to use the two-dimensional Gram-Charlier series: 

j + k = 4 

P (x.y) - P0 (x.y)^ A. >k H.)k (ifi). (*-H!)]       [57] 
j + k = 0 

where H. . (x,y) are the Hermite polynomials [48] a, b, c, C, n having the 
j, K 

values [51] and [55]. 
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Because of the orthogonality property [50], we obviously have 

the fundamental result 

A.  v = TT^ G.  ,   (Z^-*)(l-ZJi) [58] j ,k      j! k!    j,K 
v    a    /v    T    

/ l    J 

Equations   [49] give the values of the coefficients A.  .   in terms 
j ,K 

of the moments y. . (defined by [31]); we have 
J»K 

A        =1 A1=0 A1 =  0 
0,0 1,0 0,1 

A,      =0 A.   .=0 A.=0 2,o 1,1 o,2 

A -     3>0      A =     2'1 A        =     1'2 
A3,o      ,    3      R2,l      -    2 Al,2      _        2 ' 6o ' 2OT '        2OT 

yo.3 A    _ = S- » 
o, 3 3 

' 6  T 

A 1(1^0.3), 
4,0      24        4 * 

a 

1,1     6 v   3 0 r'' a    T 

A j ^2.2 _      .      ,    2\ 
A2,2 '4V2    2 ' l ' * T '' 

a    T 

Al,3     6 ^      3      ^ r^ 
* O   T 

Ao,4 s ui—t- 3) 
T 
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Of course, as for the one-dimensional case, to test the fitness 

of the approximation, we must compute A.  .   for j + k = 5 and see whether 

they are small. 

etc. 
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